QUESTION BANK

GE - 1, CALCULUS

Q 1 The velocity of a particle moving in space is

$$\frac{d\mathbf{r}}{dt} = (\cos t)\mathbf{i} - (\sin t)\mathbf{j} + \mathbf{k}.$$

Find the particle's position as a function of t if $\mathbf{r} = 2\mathbf{i} + \mathbf{k}$ when t = 0.

Q 2 Find the length of one turn of the helix

$$\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}.$$

Q 3 Find the unit tangent vector of the helix

$$\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}.$$

Q 4 Find the unit tangent vector of the curve

$$\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j}, \qquad t > 0.$$

Q 5 Find T and N for the circular motion

$$\mathbf{r}(t) = (\cos 2t) \mathbf{i} + (\sin 2t) \mathbf{j}$$
.

Q 6 Find the curvature for the helix

$$\mathbf{r}(t) = (a\cos t)\mathbf{i} + (a\sin t)\mathbf{j} + bt\mathbf{k}, \quad a, b \ge 0, \ a^2 + b^2 \ne 0.$$

Q 7 Without finding T and N, write the acceleration of the motion

$$\mathbf{r}(t) = (\cos t + t \sin t) \mathbf{i} + (\sin t - t \cos t) \mathbf{j}, \qquad t > 0$$

Q 8 Show that the function

$$f(x,y) = \frac{2x^2y}{x^4 + y^2}$$

has no limit as (x, y) approaches (0, 0).

Q 9 Show that

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

is continuous at every point except the origin

Q 10 Find
$$f_x$$
 if $f(x, y) = \frac{2y}{y + \cos x}$.

Q 11 Find $\partial z/\partial x$ if the equation

$$yz - \ln z = x + y$$

defines z as a function of the two independent variables x and y and the partial derivative exists.

Q 12) Find $\partial^2 w/\partial x \, \partial y$ if $w = xy + \frac{e^y}{v^2 + 1}.$

Q 13 Express $\partial w/\partial r$ and $\partial w/\partial s$ in terms of r and s if $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \ln s$, z = 2r.

Q 14 Use the Chain Rule to find the derivative of

$$w = xy$$

with respect to t along the path $x = \cos t$, $y = \sin t$. What is the derivative's value at $t = \pi/2$?

$$f(x, y) = x^2 + xy$$

at $P_0(1,2)$ in the direction of the unit vector $\mathbf{u} = (1/\sqrt{2})\mathbf{i} + (1/\sqrt{2})\mathbf{j}$.

Q 16 Find the derivative of $f(x, y) = xe^y + \cos(xy)$ at the point (2, 0) in the direction of $\mathbf{A} = 3\mathbf{i} - 4\mathbf{j}$.

Q 17 Find the directions in which $f(x, y) = (x^2/2) + (y^2/2)$ (a) increases most rapidly and (b) decreases most rapidly at the point (1, 1). (c) What are the directions of zero change in f at (1, 1)?

Q 18 Find an equation for the tangent to the ellipse

$$\frac{x^2}{4} + y^2 = 2$$

) at the point (-2, 1).

Q 19

- a) Find the derivative of $f(x, y, z) = x^3 xy^2 z$ at $P_0(1, 1, 0)$ in the direction of $\mathbf{A} = 2\mathbf{i} 3\mathbf{j} + 6\mathbf{k}$.
- b) In what directions does f change most rapidly at P₀, and what are the rates of change in these directions?

I Q 20 Find the tangent plane and normal line of the surface

$$f(x, y, z) = x^2 + y^2 + z - 9 = 0$$
 A circular paraboloid

at the point $P_0(1, 2, 4)$.

Q 21 The surfaces

$$f(x, y, z) = x^2 + y^2 - 2 = 0$$
 A cylinder

and

$$g(x, y, z) = x + z - 4 = 0 \qquad \text{A plane}$$

meet in an ellipse E Find parametric equations for the line tangent to E at the point $P_0(1, 1, 3)$.

Q 22 Find the plane tangent to the surface $z = x \cos y - ye^x$ at (0, 0, 0).

$$f(x, y, z) = xe^{y} + yz$$

will change if the point P(x, y, z) moves 0.1 unit from $P_0(2, 0, 0)$ straight toward $P_1(4, 1, -2)$.

Q 24 Find the local extreme values of the function

$$f(x, y) = xy - x^2 - y^2 - 2x - 2y + 4.$$

Q 25 Find the local extreme values of f(x, y) = xy.

Q 26 Find the absolute maximum and minimum values of

$$f(x, y) = 2 + 2x + 2y - x^2 - y^2$$

on the triangular plate in the first quadrant bounded by the lines x = 0, y = 0, y = 9 - x.